Quantitative nanoscale field effect sensors
نویسندگان
چکیده
Semiconductor nanowire field effect transistors have emerged as a promising technology for development of label-free biomolecular sensors for rapid diagnostics. However, their practical application has been hindered due to the significant device-to-device variations in electrical properties and the need for individual sensor calibration. Recent advances in device fabrication and demonstrations of multiplexed sensing and quantification might make this technology more competitive with respect to the current cutting-edge techniques such as surface plasmon resonance.
منابع مشابه
Effect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study
It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...
متن کاملEffects of the Spacer Length on the High-Frequency Nanoscale Field Effect Diode performance
The performance of nanoscale Field Effect Diodes as a function of the spacer length between two gates is investigated. Our numerical results show that the Ion/Ioff ratio which is a significant parameter in digital application can be varied from 101 to 104 for S-FED as the spacer length between two gates increases whereas this ratio is approximately constant for M-FED. The high-frequency perform...
متن کاملMultiplexed SOI BioFETs.
Nanoscale Field Effect Transistors have emerged as a promising technology for ultrasensitive, unlabeled diagnostic applications. However, their use as quantitative sensors has been problematic because of the need for individual sensor calibration. In this work we demonstrate an internal calibration scheme for multiplexed nanoribbon field effect sensors by utilizing the initial current rates rat...
متن کاملAptamers as molecular recognition elements for electrical nanobiosensors
Recent advances in nanotechnology have enabled the development of nanoscale sensors that outperform conventional biosensors. This review summarizes the nanoscale biosensors that use aptamers as molecular recognition elements. The advantages of aptamers over antibodies as sensors are highlighted. These advantages are especially apparent with electrical sensors such as electrochemical sensors or ...
متن کاملChannel-Width Dependent Enhancement in Nanoscale Field Effect Transistor
We report the observation of channel-width dependent enhancement in nanoscale field effect transistors containing lithographically-patterned silicon nanowires as the conduction channel. These devices behave as conventional metal-oxide-semiconductor field-effect transistors in reverse source drain bias. Reduction of nanowire width below 200 nm leads to dramatic change in the threshold voltage. D...
متن کامل